Recent Advances in Bayesian Optimization

Dr Vu Nguyen vu@robots.ox.ac.uk University of Oxford

Hyperparameters Optimization

- ML algorithm's performances depend on hyper-parameters.
- Finding the best hyperparameters for the highest performance

Traditional Hyper-parameter Tuning

• Grid Search:

- Create a list of values for each parameter.
- Consider all possible combinations of these values.
- Exhaustively evaluate the model and choose the best parameter.

Random Search:

- Randomly select a parameter to evaluate.
- Select the best parameter.

Grid vs Random vs Bayesian Optimization

Missed

Grid Search

Random Search

Found optimum location

Bayesian Optimization

Another Example: Alloy Development

- Alloy composition: X = [% Al, % Co, % Fe, % Cu, % C ...]
- Strength: y
- Goal: find the best composition X for the highest strength y.

н				A													He
u	Be			×								в	C	N	0	F	Ne
Na	Mg											AI	Si	Р	s	CI	Ar
к	Ca	Sc	T	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	РЬ	Bi	Po	At	Rn
Fr	Ra	Ac										6N	9		· · · · ·	0	72
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Tm	Yb	Lu	1	
		-							-		-						

Trial-Error Approach

• Trial-error approach is typically used for alloy development using expert knowledge

The Problem is Expensive Cost and Time

- 1 alloy testing = 1 day and \$100
- 100 experiments = 3 months and \$10,000
- Even with 100 experiments, trial-error still can not get the optimum solution

2 hours Tutorial on Bayesian Optimization

- Goal: introduce the Bayesian Optimization techniques, applications and future research directions.
 - Broad summary of recent advances in
 - Batch Bayesian Optimization
 - High dimensional Bayes Opt
 - Mixed Categorical-Continuous Bayes Opt
 - A released package MiniBO.
 - 30 papers are surveyed and organized in this talk, but they are by no means to complete.
- Tutorial website: <u>vu-nguyen.org/BOTutorial_ACML20.html</u>

- Hyperparameter Tuning and Experimental Design as Black-Boxes
- Part I: Bayesian Optimization [1 hour]
- Part II: Recent Advances in Bayesian Optimization [1 hour]
 - Batch Bayesian Optimization
 - High dimensional Bayes Opt
 - Mixed Categorical-Continuous Bayes Opt
- Future Research Directions in Bayesian Optimization

Part I: Bayesian Optimization

Agenda

- Hyperparameter Tuning and Experimental Design as Black-Boxes
- Part I: Bayesian Optimization
- Part II: Recent Advances in Bayesian Optimization
 - Batch Bayesian Optimization
 - High dimensional Bayes Opt
 - Mixed Categorical-Continuous Bayes Opt
- Research Directions in Bayesian Optimization

Outline Part 1: Bayesian Optimization

- Bayesian Optimization
- Gaussian Processes
- Acquisition Functions
- Applications
- Demo Mini BayesOpt

The relationship from x to y is through the black-box.

Properties of Black-box Function

$$f: X \in \mathcal{R}^d \to Y \in \mathcal{R}$$

No derivative form

Expensive to evaluate (in time and cost)

Nothing is known about the function, except a few evaluations y = f(x)

Bayesian Optimization

• The goal is to optimize the black-box function $x^* = \operatorname*{argmax}_{x \in \mathcal{X}} f(x)$.

• Bayes opt makes a series of evaluations $x_1, x_2, ..., x_T$ such that the maximum of f is found in the fewest iterations.

Bayesian Optimization Overview

Motivation

- Given the observations from black-box function.
- Our goal is to find the global maximizer.
- Where should we evaluate next?

Motivation

• Each line represents our belief about the underlying function given three observations.

Bayesian Optimization uses Surrogate Models

- We define a *surrogate model* to learn and update such belief.
- A *surrogate model* mimics the behaviour of the *true function f* as closely as possible.
- A surrogate model should be cheap to evaluate.

- 1. Choose a surrogate model (prior) over the possible spaces of *f*.
- 2. Combine the prior and the likelihood (from the new evaluation) to get the posterior for the surrogate.
- 3. Use the posterior to build the acquisition function to select the next evaluation.
- 4. Augment the data and repeat steps 2 and 3.

Why Bayesian?

Why Bayesian?

Illustration of Bayesian Optimization (3 points)

• Given 3 initial observations

Illustration of Bayesian Optimization (3 points)

• Given 3 initial observations

Illustration of Bayesian Optimization (4 points)

Illustration of Bayesian Optimization (5 points)

Illustration of Bayesian Optimization (6 points)

Illustration of Bayesian Optimization (7 points)

Illustration of Bayesian Optimization (8 points)

Surrogate Models Requirements

• Requirement 1: mimic the behaviour of the true function *f*.

• We can use non-linear regression models.

• Requirement 2: uncertainty for exploration

 We can use any non-linear models which can provide the uncertainty.

Surrogate Models for Bayesian Optimization

- Gaussian Process
- Random Forest (F. Hutter et al 2011)
- Support Vector Regression
- Student-t Process (A. Shah et al NIPS 2013 Workshop)
- Deep Neural Network (J. Snoek et al ICML 2015)
- Bayesian Neural Network (JT. Springenberg at al NIPS 2016)

Outline Part 1: Bayesian Optimization

- Bayesian Optimization
- Gaussian Processes
- Acquisition Functions
- Applications
- Demo Mini BayesOpt

- Gaussian process (GP) is a distribution on functions.
- GP is characterized by the mean function $m: X \to R$ and a positive definite covariance function $K: X \times X \to R$
- Similar input (high covariance) should have similar output.
- We can compute predictive mean and variance in closed-form.

Rasmussen, C. E. Gaussian processes for machine learning, 2006.

Examples of Gaussian Process

• Fitting 2D using Gaussian Process

The Benefits of using Gaussian Process

- Uncertainty
- Closed-form
- Limited data
- Non-linear

• The joint distribution follows a Multivariate Gaussian

Training points
$$\begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{y}_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K & K_*^T \\ K_* & K_{**} \end{bmatrix} \right)$$

Testing points

• The covariance matrices are

$$K_{*} = \begin{bmatrix} k(x_{*}, x_{1}) & \cdots & k(x_{*}, x_{N}) \end{bmatrix} \qquad K_{**} = k(x_{*}, x_{*})$$

$$K = \begin{bmatrix} k(x_{1}, x_{1}) & \cdots & k(x_{1}, x_{N}) \\ k(x_{2}, x_{1}) & \cdots & k(x_{2}, x_{N}) \\ \vdots & \ddots & \vdots \\ k(x_{N}, x_{1}) & \cdots & k(x_{N}, x_{N}) \end{bmatrix} \qquad k(x, x') = \sigma_{f}^{2} \exp\left[\frac{-(x - x')^{2}}{2l^{2}}\right]$$
Gaussian Process

Examples of GP Covariance functions

• Two commonly used covariance functions in Bayes Opt

Hyper-parameter Treatments in GP

• This turns out to be crucial to good performance.

- Covariance function selection (using prior knowledge)
 - SE kernel, Matern kernel, periodic kernel...etc

- Gaussian process hyper-parameters.
 - E.g., length scale parameter of SE kernel.

Treatment for GP Hyper-parameters

• Minimize negative log marginal likelihood

$$\mathcal{L} = -\log p(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{2}\log \det \mathbf{C}(\boldsymbol{\theta}) + \frac{1}{2}\mathbf{y}^{\top}\mathbf{C}^{-1}(\boldsymbol{\theta})\mathbf{y} + \frac{N}{2}\log(2\pi)$$

where θ denotes for the hyper-parameters and noise level; $C = K + \sigma^2 I$.

• Optimize \mathcal{L} using gradient descent.

Outline Part 1: Bayesian Optimization

- Bayesian Optimization
- Gaussian Processes
- Acquisition Functions
 - Upper Confidence Bound (UCB) and Expected Improvement (EI)
 - Thompson Sampling (TS)
 - Optimization toolbox for acquisition function.
- Applications
- Demo Mini BayesOpt

Bayesian Optimization Algorithm

Get initial data

Repeat

- 1. Fit a GP model to the data $(x_i, y_i)_{i=1}^t$
- 2. Define the acquisition function $\alpha(x)$ from the GP model
- 3. Select the next query $x_{t+1} = \arg \max \alpha(x)$
- 4. Evaluate the black-box to get the score

Acquisition Function α is Built from a GP

• Based on a GP surrogate above, BO defines an acquisition function $\alpha(x)$ to select a point for evaluation.

instead of
$$x_t = argmax_{x \in X} f(x)$$
 \longrightarrow $x_t = argmax_{x \in X} \alpha(x)$
unsolvable! solvable!

 Optimizing the acquisition function α is <u>cheaper</u> without using black-box evaluation.

Acquisition Function

Acquisition function balances the explore-exploit.

<u>Explore</u>: seek places with high uncertainty.

Common Acquisition Functions

- Expected Improvement [Mokus, 1972]
- Probability of Improvement [Krushner, 1997]
- GP Upper Confidence Bound [Srinivas, 2010]
- Predictive Entropy Search [Hernández-Lobato, 2014]
- Balancing the exploration-exploitation in different ways.

Outline Part 1: Bayesian Optimization

- Bayesian Optimization
- Gaussian Processes
- Acquisition Functions
 - Upper Confidence Bound (UCB) and Expected Improvement (EI)
 - Thompson Sampling (TS)
 - Optimization toolbox for acquisition function.
- Applications
- Demo Mini BayesOpt

• Upper Confidence Bound (UCB) is one of the most used acquisition function.

$$\alpha^{GP-UCB}(\mathbf{x}) = \mu(\mathbf{x}) + \sqrt{\beta} \times \sigma(\mathbf{x})$$

GP-UCB simply a combination of mean and variance functions . It encourages high mean $\mu(~~)$ and high variance $\sigma(~~)$

• Define the improvement function over the incumbent y^{max} $I(x) = \max\{0, f(x) - y^{max}\}$

where y^{max} is the best value so far.

• The expected improvement is defined as E[I(x)].

• We get the closed-form solution for the EI as $\alpha^{EI}(x) = E[I(x)] = \sigma_t(x)\phi(z) + [\mu_t(x) - y^{max}]\Phi(x)$ where $z = z(x) = \frac{\mu_t(x) - y^{max}}{\sigma_t(x)}$, $\phi()$ is the normal p.d.f. and $\Phi()$ is the normal c.d.f.

Expected Improvement

• We get the closed-form solution as $\alpha^{EI}(x) = E[I(x)] = \sigma_t(x)\phi(z) + [\mu_t(x) - \xi]\Phi(x)$

where $z = \frac{\mu_t(x) - \xi}{\sigma_t(x)}$, ϕ is the normal p.d.f. and Φ is the normal c.d.f.

• High mean and high variance => High value for EI.

Remark on Expected Improvement vs UCB

• Both EI and UCB encourages high mean and high variance. They may and may not give the same suggestion.

$$\begin{aligned} \alpha^{EI}(x) &= E[I(x)] = \sigma_t(x)\phi(z) + [\mu_t(x) - \xi]\Phi(x) \\ \alpha^{GP-UCB}(x) &= \mu(x) + \sqrt{\beta} \times \sigma(x) \end{aligned}$$

El and UCB agree with each other

El and UCB can disagree with each other

Different of Acquisition Functions (3 points)

Different of Acquisition Functions (4 observations)

Different of Acquisition Functions (5 points)

Different of Acquisition Functions (7 points)

Different of Acquisition Functions (10 points)

Outline Part 1: Bayesian Optimization

- Bayesian Optimization
- Gaussian Processes
- Acquisition Functions
 - Upper Confidence Bound (UCB) and Expected Improvement (EI)
 - Thompson Sampling (TS)
 - Optimization toolbox for acquisition function.
- Applications
- Demo Mini BayesOpt

Thompson Sampling for GP

• For GPs, *f* is an infinite-dimensional object so sampling it is not simple.

Connection of Gaussian Process to Linear Model

ullet Bayesian Linear Regression using feature ϕ and GP with kernel k are equivalent.

• Let $k(x, x') = \phi(x)^T \phi(x)$, the linear model $g(x) = \phi(x)^T w$ is an approximate sample from p(f|D) where

$$w \sim \mathcal{N}\left([\Phi^T \Phi + \sigma^2 I]^{-1} \Phi^T y, \sigma^2 [\Phi^T \Phi + \sigma^2 I]^{-1} \right)$$

 Borrowing the idea of Thompson Sampling for Bayesian Linear Regression, then do similarly for Gaussian Process.

Connection of GP to Bayesian Linear Model

Linear function $f(x) = \phi(x)^T \mathbf{w}$ Prior distribution $\mathbf{w} \sim \mathcal{N}(0, \mathbf{I})$ Likelihood $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$ Posterior $p(w) \sim \mathcal{N}(m, V)$

Posterior of Bayesian Linear Regression

Posterior
$$p(w) \sim \mathcal{N}(m, V)$$
 where $m = \frac{1}{\sigma^2} \Phi V y$
Bishop book page 153 $V = \sigma^2 \left(\Phi^T \Phi + \sigma^2 \mathbf{I} \right)^{-1}$

Predictive distribution
$$p(x \mid ...) \sim \mathcal{N} (\mu_n(x), \sigma_n(x))$$

Bishop book page 156
 $\mu_n (\boldsymbol{x}) = \phi(\boldsymbol{x})^T m = \phi(\boldsymbol{x})^T \Phi (\Phi^T \Phi + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y}$
 $\sigma_n (\boldsymbol{x}) = \phi(\boldsymbol{x})^T V \phi(\boldsymbol{x}) + \sigma^2 = \phi(\boldsymbol{x})^T \sigma^2 (\Phi^T \Phi + \sigma^2 \mathbf{I})^{-1} \phi(\boldsymbol{x}) + \sigma^2$

Woodbury matrix-inversion

$$\sigma_n(\boldsymbol{x}) = \phi(\boldsymbol{x})^T \phi(\boldsymbol{x}) - \phi(\boldsymbol{x})^T \Phi^T \left(\Phi^T \Phi + \sigma^2 \mathbf{I} \right)^{-1} \Phi \phi(\boldsymbol{x}) + \sigma^2$$

Equivalence between GP vs BLR

• Bayesian Linear Regression $\mu_n(\mathbf{x}) = \phi(\mathbf{x})^T \Phi \left(\Phi^T \Phi + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{y}$ $K_* \qquad K^{-1}$

$$\sigma_n \left(\boldsymbol{x} \right) = \phi(\boldsymbol{x})^T \phi(\boldsymbol{x}) - \phi(\boldsymbol{x})^T \Phi^T \left(\Phi^T \Phi + \sigma^2 \mathbf{I} \right)^{-1} \Phi \phi(\boldsymbol{x})$$

$$K_{**} \quad K_* \quad K^{-1} \quad K_*^T$$

Equivalent !

• Posterior Predictive distribution for GP

$$p(y_* \mid \boldsymbol{y}) \sim \mathcal{N}\left(\underbrace{K_*K^{-1}\boldsymbol{y}, K_{**} - K_*K^{-1}K_*^T}_{\mu(x)}\right)$$

Thompson Sampling for BLR

• Randomly draw w from the posterior $w \mid X \sim \mathcal{N}(\mu_n, \Sigma_n)$

• Find the optimum using *w*

 $x_* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} x^T w$

Approximate kernel by Random Fourier feature

• Transform the data space $x \in R^d$ to feature space $\phi(x) \in R^M$

• Using Bochner theorem, we approximate

$$k(x, x') = E\left[\cos(\omega^T x + b], \sin(\omega^T x + b)\right]$$

where $b \sim U[0, 2\pi]$, $\omega \sim \mathcal{N}(0, \sigma_l^2 I)$, and σ_l^2 is the length-scale of the SE kernel.

Rahimi, A. and Recht, B., Random features for large-scale kernel machines. NeurIPS, 2008.

Thompson Sampling from a Gaussian process

- $\omega_m \sim \mathcal{N}(0, \sigma_l^2 I_{d \times d}), \forall m \le M \text{ and } W = [\omega_1, ..., \omega_m] \in \mathbb{R}^{M \times d}$
- $\phi(x) = \sqrt{\frac{2\alpha}{M}} \left\{ \cos(Wx+b), \sin(Wx+b) \right\}, \quad \Phi = [\phi(x_i)]_{i=1}^N, \forall x_i \in D_t$

• $g(x) = \phi(x)^T [\Phi^T \Phi + \sigma^2 I]^{-1} \Phi^T y$

Thompson Sampling to Sample the Optimum Locations

- Thompson Sampling draws samples g() from GP.
- Each yellow stars x^* is the maximizer of the sampled function g()
- We consider x^* as the perceived optimal samples

Bayesian Optimization Algorithm

Repeat

- 1. Fit a GP model to the data $(x_i, y_i)_{i=1}^t$
- 2. Define the acquisition function $\alpha(x)$ from the GP model
- 3. Select the next query $x_{t+1} = \arg \max \alpha(x)$
- ^{4.} Evaluate the black-box to get the score $y_{t+1} = f(x_{t+1})$

After defining $\alpha()$, the optimization is done using popular toolboxes. Optimizing $\alpha()$ is easier and cheaper than f().

Outline Part 1: Bayesian Optimization

- Bayesian Optimization
- Gaussian Processes
- Acquisition Functions
 - Upper Confidence Bound (UCB) and Expected Improvement (EI)
 - Thompson Sampling (TS)
 - Optimization toolbox for acquisition function.
- Applications
- Demo Mini BayesOpt

Applications

- Robot control design
- Alloy design
- Heat-treatment design
- Machine learning hyper-parameter tuning.

Applications – Robot Design

Tuning 8 parameters (x) to maximize the speed (y) of bipedal robot.

Vu Nguyen et al, ACML 2017.

Applications – Robot Design

• Before tuning

🔍 Find 👻		Indent 🛐 💀 🚺 🗸 Adva
NAVIGATE		EDIT BREAKPOINTS
esearch ► (05.BayesianO	ptimization + RealExperiments + WGCCM_three_lir
	📝 Editor -	P:\03.Research\05.BayesianOptimization\RealExperim
	trajecto	ories.m 🛪 walker_main.m 🛪 🕂
	This file	can be published to a formatted document. For more
	106	•
	107	%% The optimization parameters
	108	8
	109 -	a = [0.512 0.073 0.035 -0.819 -2.2'
	110	% estimated
	111	%a=[0.04723732, 0.38308447, 0.0
	112	
	113	%a=[2.26588617, -0.54511502, 0.13
	114	
	115	%a=[7.72775358e-01, -5.49423726e-
	116	
	117	$a = [0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0.3176];$
	118	%a = [-0.512 0.053 0.035 -0.319 -6
	119	%a=rand(1,8);
	120	
	121 -	omega_1 = 1.55;
	122 -	x0 = sigma three link(omega 1.a):

After tuning with Bayesian optimization

esea

QF	ind 👻	Indent 🛐 🙀 🐺 🗸 Adva
NAVIGATE		EDIT BREAKPOINTS
rch ▶ (05.BayesianO	ptimization RealExperiments WGCCM_three_lir
	📝 Editor -	P:\03.Research\05.BayesianOptimization\RealExperime
	traject	ories.m 🛪 walker_main.m 🛪 🕂
	This file	can be published to a formatted document. For more
	106	
	107	%% The optimization parameters
	108	8
	109 -	a = [0.512 0.073 0.035 -0.819 -2.2'
	110	% estimated
	111	%a=[0.04723732, 0.38308447, 0.0
	112	
	113 -	a=[2.26588617, -0.54511502, 0.135
	114	
	115	%a=[7.72775358e-01, -5.49423726e-0
	116	
	117	%a = [0 0 1 0 1 1 0 0.3176];
	118	%a = [-0.512 0.053 0.035 -0.319 -6
	119	%a=rand(1,8); r
	120	1
	121 -	omega_1 = 1.55;
	122 -	x0 = sigma three link(omega 1.a):
Bayesian Optimization for Tuning Deep Learning

- Deep learning offers breakthrough in image recognition, speed recognition and self-driving cars.
- The DL performance critically depends on the hyperparameters.
- Hyperparameters include
 - 1. #layers,
 - 2. #node per layer,
 - 3. mini-batch size,
 - 4. learning rate...

Deep Learning Neural Network

Bayesian Optimization for Tuning Deep Learning

• Bayes Opt is better than human expert tuning for deep learning.

Snoek, J. et al. Practical Bayesian optimization of machine learning algorithms. NIPS 2012.

BO for Tuning Deep Reinforcement Learning

Win-rate from50% to 66%

Bayesian Optimization in AlphaGo

Yutian Chen, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser, David Silver & Nando de Freitas

> DeepMind, London, UK yutianc@google.com

Abstract

During the development of AlphaGo, its many hyper-parameters were tuned with Bayesian optimization multiple times. This automatic tuning process resulted in substantial improvements in playing strength. For example, prior to the match with Lee Sedol, we tuned the latest AlphaGo agent and this improved its win-rate from 50% to 66.5% in self-play games. This tuned version was deployed in the final match. Of course, since we tuned AlphaGo many times during its development cycle, the compounded contribution was even higher than this percentage. It is our hope that this brief case study will be of interest to Go fans, and also provide Bayesian optimization practitioners with some insights and inspiration.

- Bayesian optimization is essential for hyper-parameters tuning of the black-box functions (e.g., machine learning algorithm and experimental design).
- Bayesian optimization has both theoretical guarantee and empirical success that it performs better than random search and grid search (especially for high dimensions).
- Bayesian optimization is an active research direction.

Library for Bayesian Optimization

Package	License	URL	Language	Model
SMAC	Academic non-commercial license.	http://www.cs.ubc.ca/labs/beta/Projects/SMAC	Java	Random forest
Hyperopt	BSD	https://github.com/hyperopt/hyperopt	Python	Tree Parzen estimator
Spearmint	Academic non-commercial license.	https://github.com/HIPS/Spearmint	Python	Gaussian process
Bayesopt	GPL	http://rmcantin.bitbucket.org/html	C++	Gaussian process
PyBO	BSD	https://github.com/mwhoffman/pybo	Python	Gaussian process
MOE	Apache 2.0	https://github.com/Yelp/MOE	Python / C++	Gaussian process

MiniBayesOpt

- Package: <u>vu-nguyen.org/BOTutorial ACML20</u>
- Github repository: MiniBayesOpt

https://github.com/ntienvu/minibo

MiniBayesOpt

💭 jupyter		Quit	Logout	
Files Running Clusters				
Select items to perform actions on them.	Upload New - C			
	Name 🔸	Last Modified	File size	
🗆 🗅 mini_bo		a month ago		
🗇 🖉 demo_1dimension_BO.ipynb	Runni	ng a month ago	507 kB	\$
demo_2dimension_BO.ipynb	Runni	ng a month ago	879 kB	\$
demo_batch_BO.ipynb	Runni	ng a month ago	365 kB	\$
demo_customize_your_own_function.ipynb	Runni	ng a month ago	44.7 kB	\$
		5 years ago	1.06 kB	\$
README.md		2 months ago	1.21 kB	5
requirement.txt		a month ago	62 B	5
setup.py		a month ago	434 B	5

Demo in 1D and 2D

Demo using your own function

Customize your own black-box function

How to use Bayesian Optimization

• Run for multiple iterations

In [6]:	NN=15*myfunction.input_dim for index in range(0,NN):							
	<pre>bo.select_next_point()</pre>							
	<pre>print(tabulate([[index,np.round(bo.X_ori[-1],3), np.round(bo</pre>							
	<pre>print("</pre>							
	estimat Iter	ed lengthscale [0 Selected x	0.0353949] Output y=f(x)	Best Observed Value				
	0 Iter	[-0.862 5.967] Selected x	-18.501 Output y=f(x)	-18.501 Best Observed Value				
	1 Iter	[-1.818 7.607] Selected x	-10.586 Output y=f(x)	-10.586 Best Observed Value				
	2 Iter	[-2.858 10.062] Selected x	-3.158 Output y=f(x)	-3.158 Best Observed Value				
	3 Iter	[-4.881 10.904] Selected x	-46.923 Output y=f(x)	-3.158 Best Observed Value				
	4 Iter	[-1.63 9.679] Selected x	-9.986 Output y=f(x)	-3.158 Best Observed Value				

• Compare with Random search

Question and Answer

Reference

- V. Nguyen, S. Gupta, S. Rana, C. Li, S. Venkatesh. Regret for Expected Improvement over the Best-Observed Value and Stopping Condition. ACML, 2017.
- Hernandez-Lobato, J. M., Hoffman, M. W., & Ghahramani, Z. Predictive entropy search for efficient global optimization of black-box functions. NeurIPS, 2014.
- Hennig, P., & Schuler, C. J. Entropy search for information-efficient global optimization. Journal of Machine Learning Research, 13, 1809–1837, 2012.
- Rasmussen, C. E. Gaussian processes for machine learning, 2006.
- Mockus, J., Tiesis, V., & Zilinskas, A. The application of bayesian methods for seeking the extremum. Towards global optimization, 2(117-129), 2, 1978.
- Snoek, J., Larochelle, H., & Adams, R. P. Practical bayesian optimization of machine learning algorithms. NeurIPS, 2012.
- V. Nguyen, M. A. Osborne. Knowing The What But Not The Where in Bayesian Optimization. ICML, 2020.
- Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2015). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1), 148-175.
- Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599.

Reference

- Jones, D. R., Perttunen, C. D., & Stuckman, B. E. Lipschitzian optimization without the lipschitz constant. Journal of Optimization Theory and Applications, 79(1), 157–181, 1993.
- Kushner, H. J. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86(1), 97-106, 1964.
- Rahimi, A. and Recht, B., Random features for large-scale kernel machines. NeurIPS, 2008.
- Li, C., de Celis Leal, D.R., Rana, S., Gupta, S., Sutti, A., Greenhill, S., Slezak, T., Height, M. and Venkatesh, S., 2017. Rapid Bayesian optimisation for synthesis of short polymer fiber materials. *Scientific reports*, 7(1), p.5683.
- F. Hutter, H. H. Hoos, and K. Leyton-Brown, "Sequential model-based optimization for general algorithm configuration," Learning and Intelligent Optimization, Berlin, Germany: Springer-Verlag, 2011, pp. 507–523.
- J. Snoek et al., "Scalable Bayesian optimization using deep neural networks," in ICML 2015.
- J. Parker-Holder, V. Nguyen, SJ. Roberts. Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits. NeurIPS, 2020.
- Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.